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ABSTRACT 

In a single-target radar environment, matched filters provide the maximum output 
signal-to-noise ratio for target detection and yield the minimum mean-squared er- 
ror estimate of target range. In a multiple-target environment, the sidelobes of 
the compressed pulse must be considered in the system design because of the like- 
lihood of false alarms. In this case, the signal processor uses weighting filters 
which are not matched to the transmitted waveform. In this report, expressions 
for the mean-squared range estimation error, the estimate bias, and the effects 

of the sidelobes are derived in terms of the impulse response of an arbitrary mis- 
matched filter. We desire to find that impulse response which leads to an unbiased 
estimate having the minimum range estimate variance subject topreassigned reso- 
lution (i. e., sidelobe) constraints. This optimization problem is formulated in 
state-space in which the optimal control law is sought. Pontryagin's maximum 
principle is used to obtain necessary conditions for the optimum filter. When the 
sidelobe constraints are neglected, these conditions lead to the matched filter solu- 
tion. In an attempt to synthesize the optimal filter for the general case, we set up 
a nonlinear programming problem involving the set of unknown Lagrange multi- 
pliers. This should be a computationally easier problem to solve than the original 
variational problem. An example is given which illustrates the methodology for 
synthesizing the optimum filter when the class of admissible controls (i. e., filters) 
is restricted by physical considerations. It is in this case that the real power of 
the state-space development is clearly demonstrated. 

Accepted for the Air Force 
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OPTIMAL  MISMATCHED  FILTER  DESIGN 
FOR   RADAR   RANGING AND  RESOLUTION 

I.       INTRODUCTION 

It has long been known that the matched filter represents the "optimum" means of processing 
data to obtain estimates of target range.   Optimality, in this case, means that the estimates have 
the smallest mean-squared error possible, a result which is valid only when the signal-to-noise 
ratio (SNR) is large.    In many applications,  target resolvability is a consideration almost as im- 
portant as range accuracy,   in which case it is not clear that the matched filter is the best re- 

ceiver to use.    In fact, for some waveforms (for example, a sinusoidal pulse),  very good range 
accuracy can be obtained but the resolution problem is significant since the envelope of the 
matched filter output signal has large subsidiary sidelobes. 

One approach to this problem is to assume that the receiver is a matched filter and then try 
to design the input signal which will produce good range estimates subject to constraints on the 
sidelobe structure of the compressed pulse.    Algorithms are now available which generate the 
solution to this problem,   but in most cases the resulting waveform is quite complicated,   making 
it difficult to build a matched filter. 

Another approach is to use both a known signal which can be transmitted easily and a mis- 
matched filter.    This was done for the linear FM waveform    in an effort to reduce the sidelobes 
of the compressed pulse,  but at the expense of a loss in range accuracy.    Heretofore,  no effort 
has been made to design a mismatched filter to minimize the mean-squared range error subject 

to preassigned constraints on the sidelobe structure. 
In this report,  we assume that a given pulse is received in the presence of additive white 

Gaussian noise and passed through a filter which is not necessarily matched to the input pulse. 
We also assume that the range estimate is made by locating the time at which the envelope of 
the filter output achieves its peak value.    The performance of this estimation scheme has been 
analyzed previously   with respect to measuring the loss of accuracy and detectability due to 
nonoptimum filtering.    It is shown that the inability to build perfectly matched filters does re- 
sult in a loss of accuracy.    However,  the advantages of mismatching with respect to improving 
the multiple-target resolution is not discussed.    In general,  the mismatched filter leads to bi- 
ased estimates of the target range,  a result which the analysis in Ref. 3 fails to take into ac- 
count.     Since the estimate bias can be significant,   we rederive the  equations describing the 
performance of the mismatched filter and rectify this omission. 

In addition,  the resolution properties of the filter are derived and we show that the compos- 

ite accuracy/resolution performance of the filter depends on the filter impulse response and its 

first derivative.   We then formulate an optimum control problem which leads to the filter impulse 
response resulting in the best range accuracy subject to preassigned resolution constraints. 



An attractive feature of this approach to the design problem is that the class of admissible 

impulse responses can be restricted according to the degree of complexity one is willing to build 

into the receiver.    For example,   if tapped delay lines are to be used in the realization,  then the 

search is performed over the tap weights and spacings.    This search is then possible,   taking 

into account the effects of tap reflections and the attenuation characteristics of the real line. 
This aspect of the design will be discussed in detail in a subsequent publication. 

Here,  we concentrate on the formulation of the optimal control problem which leads to the 

best mismatched filter.    Using the maximum principle,  we derive the matched filter when the 

sidelobes are ignored.    Then,  we restrict the impulse response to be a linear combination of 
known basis functions;  such a realization is useful when using RC lumped parameter networks. 
The optimization is performed over the weight to be assigned to each function.    In the Appendix, 
the general problem with sidelobes is analyzed and,  using the maximum principle,  we are able 
to reduce the function space optimization to a nonlinear programming problem involving the un- 

known multipliers. 

II.     SUBOPTIMAL SIGNAL  PROCESSOR 

We shall assume that the range of the target is to be estimated on the basis of the received 

pulse 

r(t) = p(t - T  ) cos (w t + 9) + n(t) (II-l) 

where r    represents the true time delay,  0 is an unknown phase introduced by channel disturb- 

ances,   and n(t) is a sample function of a zero mean Gaussian random process with covariance 
function E[n(t) n(t')] = N 6(t — t1).    We assume that this signal is processed by the receiver,   a 
block diagram of which is shown in Fig. 1.    The impulse response h(-) is arbitrary except for 

the restriction that it belongs to a class of filters  H. 
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Fig. 1.    Signal processor for range estimation. 

Analyzing the receiver operations with respect to the waveform in Eq. (II-l),  we see that 

xc(t) = [p(t - TQ) + nc(t)] cos 9 - ns(t) sine 

x (t) = [p(t - T ) + n (t)] sine + n (t) cose s o        c s 

(II-2a) 

(II-2b) 



where n (t) and n (t) are the quadrature components of n(t) which can be expanded as 

n(t) = n (t) cos(w t + 9) -n (t) sin(u> t + 6) c c s c 

where 

(II-3) 

E[nc(t) nc(t')] = E[ng(t) ng(f)] = NQö(t-t') 

E[nc(t) ng(t')] = 0      . 

(II-4a) 

(II-4b) 

The filter output signals are 

ZC(T) = j      h(T -t) xc(t) dt (II-5a) 

z  (T) = I     h(r -t) x (t) dt 
«-Loo s 

(II-5b) 

Substituting Eqs. (II-2) into (II-5),  we obtain 

ZC(T) = [y(r) + »7C(T)] COSG - Tjg(T) sine 

z (T) = [y(r) + TJ   (T)] sine + y JT) cose s c s 

(II-6a) 

(II-6b) 

where 

y(T) = J    h(T-t) p(t-TQ) dt (II-7a) 

T?C(T) = j1     h(T-t) nc(t)dt (II-7b) 

TJB(T) = f    h(T-t) ng(t) dt (II-7c) 

After summing the two outputs of the square-law devices,  we have the signal 

W(T) =[y(r) + T]C(T)]
2
 + [r)s(T))Z (II-8) 

The receiver declares as its estimate of T  .  the number  T where o 

W(T) = max W(T) 
T 

(II-9) 

In order for the proposed estimation scheme,  Eq. (II-9),  to lead to error-free performance in 

the absence of noise,   it is necessary that 

max W(T) = CJ(T  ) = max y (T) 
T T 

(11-10) 

which requires that 

y'(To) = 0      . (11-11) 

We shall see that this condition leads to unbiased estimates for the unknown time delay. 



If h(t) = p(—t),   the receiver is the well-known matched  filter processor and its  perform- 
4 

ance has been well-documented in the literature.     The performance of the mismatched filter, 

h(t) ^ p(—t), for estimating target range was given some attention by Hansen, but an error oc- 

curred in that paper because it was assumed that the processor would generate an unbiased es- 

timate for any filter structure. This is not true, in general; for this reason, we give our own 

derivation of the range accuracy formula. 
In addition,  we would like to point out the fact that in Ref. 3 the motivation was to determine 

the loss in accuracy as a result of using an imperfectly constructed matched filter,  and no men- 

tion was made of the idea of synthesizing a matched filter to give good range estimates and low 

sidelobes simultaneously. 

To proceed with the analysis of the mismatched filter (which closely follows that in Ref.4), 

we assume that if the processor is to be any good then the estimate 9 should be close to T ,  the 
true value,  when the SNR is large.    Expanding W(T) about T  , we obtain 

W(T)   =  w(To)  +  w'(To)  (T - To)  +  Y W"(T0)  (T - TQ)2  +  . . . . (11-12) 

For large SNR,  the higher order terms can be neglected and the maximum of OJ(T) occurs at the 
point r where W'(T) = 0.    Therefore, 

From Eq. (II-8),  we see that 

W'(T) = 2[y(r) + ri   (T)] [V'(T) + T?'(T)] + 2T?   (T) TI-(T) (11-14) 
C Coo 

w"(T) = 2[y'(r) + T]C(T)]
2
 + 2[y(r) + vQ(T)] [V"(T) + H|J(T)] 

+ 2[T?'(T)]
2
 + 277   (T) TJ"(T)      . (11-15) 

S So 

To find an expression of (T — T   ) which is first order in the noise,  we express Eq. (11-14) to first 

order so that 

i W»(T0) = y(ro) y'(ro) + y(ro) r^rj + y'(ro) ^(r)      . (11-16) 

We shall assume that the filter has been designed for perfect noise-free performance,  so that 
y'(T  ) = 0,  which follows from our earlier discussion.    Then,   Eq. (11-16) becomes 

\   «'(T0)   =y(Tc)   77^(To) . (11-17) 

Since this is first order in the noise,  it suffices to express U"(T ) to zero order in the noise. 
From Eq. (11-15),  we find that 

Y w"(T
0) =y(T0)yM(To) (II"18) 

where we have once again made use of the fact that V'(T  ) = 0.    Then,  the error in the range es- 
timate is conveniently expressed as 

?-'0 = r7Vl "c(To>     • (II-19) 
0 



Referring to Eq. (II-7b),  we see that 

r,c(To) = J     h,(To-t) r,c(t) dt (II-20) 

which is a Gaussian random variable with mean zero and variance 

Joo 

[h'(-t)]2dt      . (11-21) 
— oo 

From Eq. (II-7a),  we see that 

Joo /ine 

h(T -t) P(t-T   ) dt =  \      h(-t) p(t + T - T   ) dt (11-22) 
_ oo ° V_ oo ° 

and, therefore, 

y'(T   ) =  \      h(-t) p'(t) dt (II-23a) 
*^_ 00 

y"(TQ)=r    h(-t) pM(t) dt     . di-23b) 
*^— 00 

Relating Eqs. (11-20) and (11-23) to (11-19),  we conclude that for large SNR the proposed estima- 

tion scheme produces range estimates which are unbiased estimates of the true parameter value 

T  ,   and have a Gaussian distribution about T  .    The mean-squared estimation error is o o ^ 

2       r°oo[h'<-t)]2dt 
E(? - T f -- N    •  —i j (11-24) 

[J^W-Op'-mdt]2 

where  E denotes the ensemble average.    This result is valid for the class of filters for which 

h(-t) p'(t) dt = 0      . (11-25) r. _ 00 

In fact,  the pr jposed processor is meaningful only for this class of filters. 

If the filter is matched to the signal,  h(t) = p(-t) and,   in this case,   Eq. (11-25) is always 

satisfied.    It is then easy to show that Eq. (11-24) becomes 

E(T-T   )* =  -z= 2—5  (H-26) 
° r.[p'(t)]2dt 

which is the classical result,  and provides a check on our analysis to this point. 

Thus far,  the analysis has been restricted to the large SNR range accuracy performance 

of the receiver.    The multiple-target resolution capabilities can be taken into account by first 

observing that the envelope y (T) will have,   in addition to a maximum at T      subsidiary peaks — 

called sidelobes at other T values.    If these sidelobes are the same order of magnitude as 
7 

y  (T  ),   it will not be possible to distinguish between two distinct but neighboring targets.    There- 

fore,  it is desirable to design the filter to make these sidelobes small with respect to the mag- 

nitude of the central lobe at T  .    This can be done by requiring that the constraint 

y2(r)^ €(r)y2(To) 



be satisfied,  where e(T) represents the sidelobe constraint function and is chosen to combat the 
particular clutter distribution under consideration.    Since 

y(T) = (      h(T -t) p(t-T  ) dt 

I h(-t) p(t + r -T) dt (11-27) ° 
then y(T   ) is independent of r    and the sidelobes can be kept low by requiring that 

M      h(-t) p(t + T) dtl    -€(T)K     h(-t) p(t) dt     ^0      . (11-28) 

In practice,  h(0 and p(-) are band-limited functions,   in some sense,  and the continuum of con- 
straints can be replaced by the finite number of constraints 

j      h(-t) p(t + T ) dt     -€.  K     h(-t) p(t) dtl   40 j = 1, 2, ...,n      . (11-29) 

The foregoing analysis leads to the following filter design problem:   From the class admis- 
sible filters  H,  we wish to find that filter which minimizes the quantity 

/"w[h'(-t)]2dt 
~2 (II-30a) 

[JT.oW-t)pM(t)dt]' 

subject to the "zero-bias" constraint 

■»00 

h(-t) p'(t) dt = 0 (II-30b) r 
and multiple-target resolution constraints 

\\     h(-t) p(t + T.) dt     -e. \\     h(-t) p(t) dt     ^0 j = 1, 2, n      . (II-30c) 

In Sec. Ill,  we use state-space techniques to formulate this design problem as an optimal 
control problem in state-space.    Then,  by using the maximum principle,  we can derive the con- 
ditions necessary for optimality. 

III.    STATE-SPACE   FORMULATION OF  THE  DESIGN   PROBLEM 

Here,  we shall formulate the mismatched filter design problem using state-variable tech- 

niques so that the theory of optimal control can be used to synthesize the optimum filter.   In or- 

der to do this,   we first assume that the filter impulse response is of finite duration,   T seconds, 
and is identically zero for t / [0, T],     In addition,   we assume that the transmitted pulse p(t) is 
also time limited to the interval [0, T],  an assumption which will always be satisfied in practice. 

Finally,  we point out the fact that in the analysis of Sec. II the performance depended on that 
part of the impulse response for t < 0.    In order to guarantee the realizability of the optimum 
filter,  we need only replace h(—t) in all our equations by h(T — t). 



We define the control function u(t) as the first derivative of the impulse response,  while the 

impulse response itself is set equal to the first component of the state vector; i. e., 

u(t) = h'(T -t) (III-l) 

xd(t) = h(T -t) (III-2) 

which leads to the state equation 

x^t) = -u(t) (III-3) 

and,  since the filter is initially at rest when the pulse arrives, we set 

xd(0) = 0      . (III-4) 

In addition,  we define four more state variables according to the state equations 

x2(t) = h(T -t) p(t) (III-5a) 

x3(t) = h(T-t) p'(t) (III-5b) 

x4(t) = h(T-t) pM(t) (III-5c) 

i5(t) = Ih'(T -t)]2 (III-5d) 

each having the initial conditions 

x2(0) = x3(0) = x4(0) = x5(0) = 0      . (III-6) 

It is obvious that 

x2(T) =  f    h(T- 
Jo 

t) p(t) dt (III- 7a) 

x3(T) =  \     h(T- 
Jo 

t) p' (t) dt (III- •7b) 

x4(T) = \     h(T - 
Jo 

t) p' '(t) dt (III- ■7c) 

x5(T) = I1    [h'(T 
Jo 

-t)]; 1 dt      . (III- ■7d) 

Furthermor e,  by substituting Eqs . (Ill -1) and (III- ■2) into (III- >5) we obtain the following set of 

first -order differentia] L equations 

xd(t) = -u(t) x4(0) = 0 (III- -8a) 

x2(t) = p(t) x4(t) x2(0) = 0 (Ill- -8b) 

x3(t) = p'(t) xd(t) x3(0) = 0 (III- -8c) 

x4(t) = p'^tjx^t) x4(0) = 0 (III-8d) 

x5(t) = u2(t) x5(0) = 0 . (III- -8e) 



The zero bias constraint,   Eq. (II-30b),   requires that 

x3(T) = 0 (III-9) 

which follows from the definition Eqs. (Ill-5b) and (III-7b).    Subject to this constraint,   the best 

range estimate is obtained by minimizing Eq. (II-30a),  which is equivalent to minimizing 

-x^(T)/x5(T) (111-10) 

which also follows from the above definitions. 

Finally,  the multiple-target resolution requirements are accounted for by defining the state 

variables 

y (t) = h(T -1) p(t + T.) j = 1, 2 n (III-ll) 
J J 

with y(0) = 0 for all j.    Then it is clear that 
J 

y.(T) = f    h(T-t) p(t + T ) dt (111-12) 
J J0 J 

and for good resolution,  we therefore require that 

y2(T)-e x2(T)4 0 j = 1, 2, . . ., n (111-13) 
J J 

which follows from Eq. (II-30c) and the above definitions.    Therefore,  the filter design problem 

is equivalent to the following optimal control problem.    Find the control function u(t) and state 

vector [x1(t)J . . ., Xgtt), y^t), . . . , yn(t)] which 

(a) satisfy the differential equations 

Xl(t) = -u(t) 

x2(t) = p(t) x1(t) 

x3(t) .p'ltlijlt) 

x4(t) = p'Wx^t) 

x5(t) =u2(t) 

y,(t) = p(t + T )x4(t) J- 1.2 n 
J J 

(b) satisfy the initial conditions 

x^O) = ...   = x5(0) = 0 

7^0) = ... =yn(0)= ° 

(c) satisfy the terminal conditions 

x3(T) = 0 

.2/rTM      m „2/rT,x ^ n j = 1, 2, . . . ,n y.'(T)- €.x2"(T)4 0 



(d)    minimize the functional 

-x4
2(T)/x5(T)      . 

The optimum control function is to be selected from some class of admissible controls  U. 

This class is directly related to that of admissible impulse responses  H.    So far,  we have im- 

plicitly assumed that if h e H,   it is at least once differentiable and,  therefore,  u € U must be 

piecewise continuous.    Additional restrictions on U  can be imposed by taking into consideration 

the specific application to which the filter is to be used.    For example,   in a radar application, 

it might be necessary to build the filter using a tapped delay line.    The optimization would then 

be done on the set of tap weights,  which merely requires imbedding the structure of the delay 

line into the above formulation.    Even the physical properties of the line,   such as tap reflections 

and line attenuation,   can be handled in this manner.    This represents the real power of the state- 

space approach,  since no matter how complicated the system may become,   efficient algorithms 

can be brought to bear on the problem.    We are currently investigating this aspect of the design 

for linear FM pulses,  and will report our findings thoroughly in a future publication. 

IV.    EXAMPLES OF  CONDITIONS  NECESSARY   FOR  OPTIMALITY 

We shall now illustrate the control theoretical techniques which must be used to solve for 

the optimum control analytically.    In the first example,  we shall neglect the resolution con- 

straints and allow the class  U  to be all piecewise continuous functions.    Of course,  the optimum 

filter will be the matched filter.     The result is interesting,   however,   since it illustrates the 

fact that variational methods applied to the estimate variance for mismatched filters  lead to 

the matched filter.    Heretofore,   this result has been obtained only by using statistical methods 

as in Ref. 4.    Control techniques have been used previously to derive the matched filter,   but in 

those papers,  usually only an artificially defined SNR is optimized.    We have therefore obtained 

a rather ideal blend of the control and communication theoretical techniques. 

In the second example,  we restrict the class of filters  H to be linear combinations of orthog- 

onal basis functions.    The optimum weighting for each component is obtained analytically,  again 

assuming no sidelobe constraints.    This result is useful in that it shows how the method applies 

to a smaller class of filters and,   in addition, functions can be chosen which lead to a convenient 

RC realization of the optimum filter.    Although such a filter cannot perform as well as a matched 

filter,   it represents the best possible RC approximation to the matched filter,   in the sense of 

minimum estimate variance.    This,   then,   is certainly a better approach than using cut-and-try 

to get close to matched filter performance as was done essentially in Ref. 3. 

The third example is a repeat of the first except that the sidelobe constraints are considered. 

Since most of the manipulations are similar to those used in the first two examples above,   the 

details are presented in the Appendix.    In this case,   it is not possible to solve for the optimum 

control analytically.    However,  we show that the variational problem can be reduced to a non- 

linear programming problem involving the unknown multipliers.    This should be a simpler prob- 

lem to solve numerically than the first.    We now consider each of the examples in detail. 

Example 1:   No resolution constraints,   arbitrary U 

In this case the state equations are simply 

Xl(t) =-u(t) x±(0) = 0 (IV-la) 



x2(t) = p(t) x1(t)               x2(0) = 0 (IV-lb) 

x3(t) = p'(t) x4(t)             x3(0) = 0 (IV-lc) 

x4(t) = pM(t) x1(t)            x4(0) = 0 (IV-ld) 

x5(t) = u2(t) x5(0) = 0 . (IV-le) 

Defining the functions 

Ö0[x(T)] = -x4
2(T)/x5(T) (IV-2a) 

e^xjT)] = x3(T) (IV-2b) 

we want to minimize 0    subject to the constraint 0, = 0.    The Hamiltonian for this problem is 

H(x,X,u) = -A^t) u(t) + X2(t) p(t) x1(t) + X  (t) p'(t) x4(t) 

+ X4(t) pM(t) xd(t) + X5(t) u2(t) (IV-3) 

where the costate variables X(t) satisfy the equations 

Vj(t) = -§f-           j ■ 1.....5      . (IV-4) 

Therefore, 

X4(t) = -p(t) X2(t)-p,(t) X3(t)-p"(t) X4(t) (IV-5a) 

X2(t) = 0 (IV-5b) 

X3(t) = 0 (IV-5c) 

X4(t) = 0 (IV-5d) 

Xg(t) = 0      . (IV-5e) 

The terminal values of the costate variables are obtained from 

*        ae.[x(T)] 

YT) - I "i -itnr (IV-6) 

i=0 J 

and,  therefore, 

X1(T) = 0 (IV-7a) 

X2(T) = 0 (IV-7b) 

X3(T) = Q?1 (IV-7c) 

X4(T) = -2aox4(T)/x5(T) (IV-7d) 

X5(T) = aox4(T)/x5
2(T)      . (IV-7e) 

10 



Combining Eqs. (IV-5) and (IV-7),  we get 

A2(t) = 0 (IV-8a) 

X3(t) = a1 =\3 (IV-8b) 

X4(t) = -2oox4(T)/x5(T) = X4 (IV-8c) 

Xg(t) = aox4
2(T)/x5

2(T) ^X5 (IV-8d) 

and the equation for X1(t) is simply 

X4(t) --X3p'(t) -X4p"(t) (IV-9) 

with X^(T) = 0.    This equation is easily integrated to give 

X^t) = X3[p(T) - p(t)] + X4[p'(T) - p'(t)J       . (IV-10) 

We shall assume that 

p(0) = p(T) = 0 (IV-lla) 

p»(0) = p'(T) = 0 (IV-llb) 

so that 

X4(t) = -X3p(t) - X4p'(t)      . (IV-12) 

The maximum principle    states that,  for the optimum control,  X(t) ^ 0 and a   ^ 0,   and that the 

Hamiltonian is maximized by the optimal control.    This is equivalent to maximizing 

h(u) =-X1(t) u(t) + X5u2(t)      . (IV-13) 

The maximization is performed over the set of u e U.    At this point,   the properties of the real 

filter are taken into account by restrictions imposed on U.    For the first example,   U  is arbi- 

trary and the methods of ordinary calculus can be used in the maximization.    There are two 

cases to consider at this point:    a    = 0,  and a   < 0.    If a    = 0,   then from Eq. (IV-8),  X4(t) = 0, 

X_(t) E 0,  and in Eq. (IV-12),  X^t) reduces to 

xd(t) =-X3p(t)      . 

If X_ = 0 or X .(t) = 0 for some t,  then X(t) = 0 and this contradicts the necessary condition for 

optimality.    Therefore,  X    ^ 0 and maximizing Eq. (IV-13) means maximizing 

h(u) = X3p(t) u(t) 

which is meaningless.    We therefore conclude that a   < 0,   in which case X5 < 0 from Eq. (IV-8d). 

Therefore,   Eq. (IV-13) has the well-defined maximum 

u(t) =X4(t)/2X5      . 

Using Eq. (IV-12),  we conclude that the optimum control is of the form 

. X \ 
U(t) ="2X     p(t)~2X     p'(t)      • (IV-14) 
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Thus,   the optimum filter is of the form 

X3    f1 X4 
l(t) =  VT J    p(a) d(T +  ZT p(t)      ' (IV-15) 

5 «-0 "5 

The zero bias constraint requires that x_(T) = 0,  which,   from Eq. (IV-lc),   is equivalent to 

>T 

4 
Applied to Eq. (IV-15),  we get 

\     p'(t) xd(t) dt = 0      . (IV-16) 

zr. r p,(t) ir ^ Hdt+it r^ p(°dt=° ■ 5    o l^o J 5     o 

Using integration by parts and the conditions in Eqs. (IV-11), we get 

l5 4 
A3 r1 2 

-2X7 J     P(t> 

Since the integral represents the energy in the transmitted signal,  which is nonzero,  then it is 

necessary that X- = 0.    By using this result in Eqs. (IV-14) and (IV-15),  the optimum control and 

filter are 

u(t) =-^r~ P'(t> (IV-17a) 
2A5 

54(t) =   2JT P(t)       . (IV-17b) 

The minimum cost is —x4(T)/x_(T) where 

x4(T) = j     p"(t) x4(t) dt 

=  2A     \     PM(t) p(t) dt (IV-18a) 

S5(T) = J    u2(t) dt 

X2   /^T 
= —|-J    [p'(t)]2dt      . (IV-18b) 

X5° 

Using integration by parts and Eqs. (IV-11),  we can show that 

-T pT 
\     p"(t) p(t) dt =- \ 

Jo Jo 

and therefore the minimum cost is 

■I 

r P"(t) p(t) dt=- r [P»(t)]2dt (iv-i9) 
Jo Jo 

ie minimum cost is 

-J    [p'(t)]2dt      . (IV-20) 
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Since this is independent of the unknown multiplier X^/ZXj.,  we might as well set it equal to unity, 

in which case 
4'""5' 

u(t) = -p'(t) (IV-21a) 

(IV-21b) x\(t) = p(t)      . 

However,  we defined x.(t) = h(T — t).    Therefore,  the optimum impulse response is 

h(t) = p(T-t) (IV-22) 

which defines the matched filter. 

Example 2:   No resolution constraints,   restricted U 

The only difference between this and the preceding case is the class of functions  U  over 

which the Hamiltonian is to be maximized.    Recall from Eq. (IV-13) that the optimum control in 

the set U maximized the function 

h[u(t), t] = -X^t) u(t) + A5iT(t) 

where 

X4(t)  =-X3p(t)-\4p'(t)       . 

In this case,  we set 

m 

U = u:u(t) =    YJ    
cj^j(t) 

3=1 

(IV-23) 

(IV-24) 

(IV-25) 

where {ip.}.   . are orthonormal,   i.e. 

-T r». ) *k(t) dt = ö k for all j, k (IV-26) 

We shall use vector notation with (•)   denoting the vector transpose.    Then,   if u e U maximizes 

Eq. (IV-23) for each t (i. e.,  u  is the optimal control),   then 

h[u(t), t] ^ h[u(t), t] for all t € [0, T] 

and,  therefore, 

-T rT 

~o 4> 

Since u e U,  then u(t) = ^(t) c.    Using this fact and Eq. (IV-23) in Eq. (IV-28),  we find that 

r»T 

f    h[u(t), t] dt^ f    h(u(t),t] dt      . 

ÜV-27) 

(IV-28) 

l-f    X^tj/tt) dtj c + X5c- \\    jp(t) £*(t) dt    c 

f-J    X4(t) ^(t) dt] C+XjC1 h     $(t) £*(t) dt] c (IV-29) 
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where c leads to the optimal control u.    Since the basis functions were orthonormal,  the matrix 

V    tf'(t) ^(t) dt = I 
J0   -     - 

which is the m x m identity matrix.    Letting 

a =- \     X,(t) ip(t) dt (IV-30) 
Jo 

we conclude that the optimum set of coefficients  c  must maximize the function 

1(c) = a*c + X5ctc      . (IV-31) 

We have already shown that X   < 0;  therefore,  the c which maximizes Eq. (IV-31) is 

c=-q/ZX5      . (IV-32) 

But,  from Eqs. (IV-30) and (IV-24), 

\      CT X      fT 
f-        p(t) *(t) dt + 2JT \ 
l5 Jo 6AS Jo 

We let 

A       
A3    fT X4    fT 

c =  2jf" J     p(t) ^(t) dt +  25f" J     p'(t)^(t)dt      . (IV-33) 

4 
-T 

4 
and,  therefore, 

a = C    p'(t) 4>(t) dt (IV-34a) 

b = f    p(t) 0(t) dt (IV-34b) 

£=^T^+^7^   • ,IV-35) 

Substituting this back into the defining equation for u e U,  we see that the optimal control is 

^(t) = W~ ^(t) *- +  ZX~ ^(t) -      ' (IV-36) 
5 5 

The corresponding state variable x.is 

X. X 
*l(t) = " ZT   £(t) *-" ZX     ^(t) k- (IV-37) 

where 

^(t) = f   ipHa) da      . (IV-38) 
Jo ~ 

It is convenient to define new functions 

Xa(t) = ^(t) a (IV-39a) 

Xb(t) =/(Ob (IV-39b) 

14 



and variables 

*a(t) = ^(t) a (IV-40a) 

*b(t) = /(t) b (IV-40b) 

a± = X4/2\5 (IV-41a) 

az = X3/2X5        . (IV-41b) 

Notice that while a. and a»    are as yet unknown,  the functions x  ,   Xh,   *  .   and 4>    are completely 

determined by the given pulse p(t) and filter basis functions ip(t).    By using this new notation, 

Eqs. (IV-36) and (IV-37) become 

u(t) = a1xa(t) + «2Xb(t) (IV-42a) 

x,(t) = - a.*   (t) - a,*.(t)      . (IV-42b) l                  la              Z   b 

As before,  we have the zero bias constraint of Eq. (IV-16) 

x3(T) = \     p'(t) x^tjdt = 0 (IV-43) 

which requires that 

ai  \     P'(t) *a(t) dt + aZ  )     P'(t) *b(t) dt = °      ' (IV-44) 

By letting 

II P'(t> *o(t> dt 
^/rpv _     ^o      a  P(T) -~-pf  

/0
T p'(t) *b(t> dt 

where now 

(IV-45) 

Eq. (IV-44) then requires that 

az = p(T) ax (IV-46) 

and,  from Eqs. (IV-42),  we have 

u(t) - [xa(t) + p(T) Xb(t)] a± (IV-47a) 

5l(T) = ~[*a(t) + p(T) *b(t)] a±      . (IV-47b) 

The minimum cost is given by 

-x4
2(T)/x5(T) (IV-48) 

x4(T) = J    p"(t)S1(t) dt 

= -a1  f    p"(t) [*a(t) + p(T) *b(t)] dt (IV-49a) 
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x,(T) = f    u2(t) dt 
Jo 

■■?{ 
'T 2 [xa(t)+p(T)xb(t)r dt      . (IV-49b) 

The minimum cost is therefore 

tfo   pM(t) [*a(t) +p(T) *b(t)]dt> 
 Pr 5  (iv-50) 

£ [xa(t) +p(T) xb(t)P dt 

which is again independent of the unknown multiplier a^.    Therefore, we can set a    = 1,   in which 
case the optimum solutions are 

u(t) = xa(t) +p(T) xb(t) (IV-51a) 

xd(t) =-*a(t)-p(T) *b(t)      . (IV-51b) 

More importantly,  from Eq. (IV-46) and the fact that a.  = 1,  we have a_ = p(T).    Then,   from 
Eqs.(IV-41), 

*4/2X5 = 1 (IV-52a) 

X3/2X5=p(T)      . (IV-52b) 

Finally,   in Eq. (IV-35),  the optimum weights are 

c = a + p(T) b 

where  a,  b,  and p(T) are defined in Eqs. (IV-34a),   (IV-34b),  and (IV-45),   respectively. 
In effect,   what we have done is to project the matched filter onto the subspace spanned by 

the set of functions i^iJk^i' wnere tne projection has been done with respect to a norm involv- 
ing the mean-square estimation accuracy of the filter processor. 

From this example,  we can conclude that the methodology to be used when even more strin- 
gent physical realizability constraints are to be imposed is relatively straightforward. 

Example 3:   Resolution constraints,  unrestricted U 

In this case,   the system is the same as for  Example 1  with the additional sidelobe con- 

straints,  and the steps in the synthesis are quite similar.    For this reason,   the details are pre- 
sented in the Appendix.    Here,  it was not possible to obtain a completely analytical solution for 

the optimum control because of the large number of constraints which had to be satisfied.    How- 
ever,  we were able to reduce the variational problem to a nonlinear programming problem in- 
volving a set of n + 3 unknown multipliers.    It should be comparatively easier to generate the 

solution to the optimization problem in n + 3 space rather than to deal directly with the general 

variational problem with which we started. 

V.     CONCLUSIONS 

The purpose of this report has been to outline the methodology to be used in formulating 
the mismatched filter design problem.    An expression for the range accuracy using such a filter 
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has been derived to take into account the estimate bias.   In addition, the resolution requirements 
of the radar have been included by imposing constraints on the sidelobes of the compressed 
pulse.    State-space methods were then used to develop an optimal control problem whose solu- 
tion led to the impulse response which,   in turn,  would yield the best mean-squared range accu- 
racy subject to preassigned sidelobe constraints.    Ignoring the sidelobes and applying the maxi- 
mum principle led to the classical matched filter.    Control techniques have been used before to 

obtain the matched filter solution,  but the optimization has always involved a rather artificially 

defined signal-to-noise ratio.    Our approach takes the range estimation performance into ac- 

count directly and exhibits an "optimum" blend of the communication and control systems 

disciplines. 

Another example was studied in which the sidelobes were again ignored,  but this time the 
set of admissible filters was restricted to a linear combination of specified basis functions. 

The optimum weights could be found analytically and these led to an optimum filter within a sub- 
class of filters not necessarily containing the matched filter.    Such a realization can be obtained 
using RC structures which are relatively simple to build. 

Applying the maximum principle to the design problem with sidelobe constraints led to a 
nonlinear programming problem involving the set of n + 3 unknown multipliers.    Implementing 
algorithms for solving this subsidiary optimization problem should be easier than dealing with 

the original variational problem. 
In the most general problem in which sidelobes are taken into account and in which the class 

of admissible filters is restricted by physical considerations,   numerical methods will have to 
be used.    However,   computational techniques for obtaining the optimal solutions are well- 
established in the control field.    The state-space formulation for the filter design therefore 
leads to a technique for generating the optimum mismatched filter. 
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APPENDIX 

We shall now derive the necessary conditions for the optimum mismatched filter designed 

for sidelobe reduction as well as for good range accuracy.     In this case,  the state equations 

are precisely those derived at the end of Sec. Ill and are summarized below for convenience. 

i1(t) = -u(t) x1(0) = 0 

x2(t) = p(t) xd(t) x2(0) = 0 

x3(t) = p'(t) xd(t) x3(0) = 0 

x4(t) = p"(t) x4(t) x4(0) = 0 

x5(t) = u2(t) x5(0) = 0 

y.(t) = p<t + T.) x.(t) y.(0) = 0 j = 1, 2 , n (A-l) 
J J J 

x3(T) = 0 

y.2(T)-cjX2
2(T)^ 0 j = 1, 2 n      . (A-2) 

Subject to the preceding conditions,  we wish to find the control function u(t) which minimizes 

the functional — x.{T)/xc.(T).    Notice that scaling the control function by an arbitrary constant 

has no effect on the terminal constraints or the cost functional.    Therefore,   an equivalent prob- 

42< 
lern is to minimize -x.(T) subject to the constraints of Eqs. (A-l) and (A-2) and the additional 

constraint 

x5(T) = 1      . (A-3) 

As before,  we define the functions 

9o[x(T)] = -x4
2(T) 

ejxjT)] = x3(T) 

62[x(T)] = x5(T)-l 

<Mx(T),y(T)] =y2(T)-e.x2(T) j = 1,2 n      . (A-4) 
J —       — J J   c 

In this case,  the Hamiltonian is 

H[x(t), y(t), u(t), Mt), fi(t)] = -X4(t) u(t) + X2(t) p(t) x^t) + X3(t) p(t) x±(t) 

+ X4(t) p"(t) x4(t) + \5(t)u2(t) 

m 

+   J]   ji.(t) p(t + T ) y.(t)      . (A-5) 
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The costate variables satisfy the equations 

(A-6) 

which,  in this case,  are given by 

Ad(t) =-p(t) X2(t) -p'(t) X3(t) -p"(t) X4(t)-   YJ   p(t + T.) Ht.(t) 
J J 

xk(t) = 0 k = 2, ..., 5 

Kj(t) = 0 j = i,2,...,n     • 

The terminal values of the costate variables are obtained from 

(A-7a) 

(A-7b) 

(A-7c) 

J; 89.[x(T)] " di».[x(T), x(T)) 

YT) = 2 ai 8x.(T)  + 2 "i —^rm— 
i=0 J i=l J 

(A-8a) 

* a^Jx(T), Z(T)] 
VT) = £ "i —^m— (A-8b) 

and,  therefore, 

Xd(T) = 0 

X2(T) =-2x2(T)    £    Vi 
i=l 

X4(T) =-2aox4(T) 

,3(T) . 2V (T) j = 1,2, ...,n 

(A-9) 

X3(T) = a4 

In addition,  the constant multipliers y. are zero if 

y.2(T)-£.x2(T)< 0 

7 
and c.^ 0 otherwise.     Therefore,  we assume that the summations on j   include only those terms 

corresponding to sidelobe constraints which are actually on the boundary.     Now we combine 

Eqs. (A-7) and (A-9) to get 

X2(t) =-2x2(T)    YJ    Vt =x
2 

i=l 

X3(t) = 0f1 =X3 

X4(t) £-2%x4(T)=X4 

X5(t) = a2^X5 

li^t) = 2y.(T) v. -n.      j = l,...,n (A-10) 
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and the equation for X At) is simply 

n 

X^t) --X2p(t)-X3p,(t)-X4p',(t)-   YJ    ^jP(t+Tj) (A"11> 

3=1 

with X,(T) = 0.    This equation is easily integrated to give 

X1(t)=X2J     p(a)da+ X3[p(T)-p(t)]   + Xjp'CT) - p'(t)] 

n rp 

YJ    \I.  \     p(a + T.) da      . (A-12) 
J    t 

j = l 

As before,  we assume that 

p(0) = p(T) = 0 (A-13a) 

p'(0) = p'(T) = 0 (A-13b) 

so that 

X^t) = -X4p(t) -X3p(t) + X2 J     p(a) da +   2    ^jj     p(a + T ) da      . (A-14) 
* j=l * 

The maximum principle states that the optimum control must maximize the Hamiltonian. 

Therefore,   it is necessary that the function 

h(u) = -Xd(t) u(t) + X5u2(t) (A-15) 

be maximized for the optimum u e U.    We shall assume that U  is arbitrary and that a   < 0, 

a   < 0.    (This must be the case from arguments given in Sec. IV.)   Therefore,  the optimum con- 

trol is of the form u(t) = X  (t)/2X  .    Using Eq. (A-14),  we conclude that 

X X X      rT "      n      fT 
u(t) =  2X     p'(t) ~2X     p(t) +   2X     J      P(ff>da+   L    2X^J     p(a + r..)da      . (A-16) 

5 5 -  5    t .=1       5    t 

It is convenient to use vector notation to express u(t),  which we do by defining the n + 3 vectors 

a_ and z(t): 

«4 =-X4/2X5 zd(t) = p'(t) 

a2 =-X3/2X5 z2(t) = p(t) 

a3 = +X2/2X5 z3(t) = J     p(a) da 

aj+3 = n/2X5 
z
J + 3(t)=Jt   P<» + Tj>da J = 1'2 n (A-17) 
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The optimum control may then be written as 

u(t) = alz(t) (A-18) 

where the superscript t denotes the vector transpose.    We define another n + 3 vector _w(t) by 
setting 

w(t) = - f   z(<r) do-      . (A-19) 
Jo 

Then,   from Eqs. (A-l),  the optimum filter is 

x1(t) = qXu(t)      . (A-20) 

It is now possible to solve for the terminal values of the remaining state-variables by substitut- 
ing in Eqs. (A-l) 

-T .  nT 
x2(T)=T    p(t)x1dt=atJ    p(t)cu(t)dt 

o o 

x3(T) = J    p'(t) x4(t) dt = a} J    p'(t) w(t) dt 

rp rp 

x4(T) = j     pM(t) x4dt = a* j     p"(t) w(t) dt 

x5(T) = j*    u2(t) dt = aMJ*    z(t) z»(t) dtj a 

rT + rT 

y.(T) = \     p(t + T.) x,(t) dt = a- \     p(t + r ) co(t) dt      . (A-21) 
j J0 J     1 Jn J 

^T .   rT 
I     p(t + T.) x,(t) dt = aM 
Jo J Jo 

It is convenient to introduce some additional notation: 

Zpw = Io   P
(t) *(t> dt 

ipFw-j^pWact)* 

2p"w=J    P"(t) cü(t) dt 

y. =  f    p(t + T.) w(t) dt (A-22) 
-J     J0 J 

where all the above vectors have n + 3 components.    In addition, we define the (n + 3) x (n + 3) 

matrix 

r = J    z(t) z*(t) dt (A-23) 
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so that 

x2(T) = a}y pv 

x,(T) = aXy  , 

x\(T) = ctS  ,, 4 -IpMw 

x,(T) = otr.2 

y (T) = aV      . (A-24) 
J J 

It is important to note that trie vectors y_ and matrix r  are completely known quantities.    Only 

the vector   a needs to be determined,  and it must satisfy the constraints of Eqs. (A-2) and (A-3), 

namely, 

x3(T) = 0 

^m-e.x^m^o 

These become 

x.(T) = 1 j = 1,2, n      . (A-25) 

a y . - -p'w = 0 

t       t t . A a y.y. at — <:.at y     at £ 0 

aTo = 1      . (A-26) 

These equations represent a + 2 constraints on the n + 3 variables a.,..., a       .    The remaining 
/\ 2 

degree of freedom is used 1o minimize the cost functional —x4(T),  which in this case is 

Now,  we let 

-aly  ,,   y1,.    a      . (A-27) — Ip"w-pMw— 

r. = y.y. --€.y    y 
J     L1L1        j-pwipw 

ro - Ip"w^p,,w) 

and the original variationa. problem for the optimum mismatched filter reduces to the following 

nonlinear programming problem. 

Find the n + 3 vector  gt_ which maximizes the function 

i(a) = ofr   a 
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subject to the constraints 

ri(a) = a*2pw = 0 

rja) = aVa -1=0 

"3        -   r 
q.(a) = aT.a^ 0 j = 1,2, n      . (A-28) 

It may be that this nonlinear programming problem is easier to solve than the original variational 

problem. 
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programming problem invoMng the set of unknown Lagrange multipliers.   This should be a computa- 
tionally easier problem to solve than the original variational problem.   An example is given which illus- 
trates the methodology for s/nthesizing the optimum filter when the class of admissible controls (i.e., 
filters) is restricted by physical considerations.   It is in this case that the real power of the state-space 
development is clearly demcnstrated. 
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